Yikun Bai

Research Interest

Computational optimal transport, mathematical machine learning, computer vision

Education

Ph.D. Electrical and Computer Engineering	2019 - 2022
The University of Delaware (U.S.)	GPA: $4.0/4.0$
Thesis: From measure concentration through information theory to machine learning	
M.S. Applied Mathematics (Ph.D. Transferred)	2016 - 2018
University of Delaware (U.S.)	GPA: $4.0/4.0$
Completed qualifying exams in: Functional analysis, Stochastic processes, Hypothesis testing	
M.A. Mathematics	2014 - 2016
Marshall University (U.S.)	GPA: $4.0/4.0$
B.S. Medical Imaging	2007 - 2012
Mudanjiang Medical University (China)	Grade: 83/100

Research Experience

• Computer Science Department, Vanderbilt University

2022/02 - Present

Postdoctoral Researcher

- Developed algorithms for various Optimal Transport (OT) problems, including Partial OT, Linear OT, and Partial Gromov-Wasserstein, etc.
- Conducted extensive theoretical research in computational OT and related concepts (metric property, convergence analysis, barycenter, gradient flow, etc).
- Designed and executed experiments applying OT in several machine-learning/computer vision tasks, such
 as shape registration, interpolation, retrieval, and color adaptation.
- Participated in other machine learning tasks, including Wasserstein auto-encoder, self-supervised learning, and Wasserstein gradient flow.

- Achievements:

- * Lead author of research papers published at CVPR 2023 and ICML 2023.
- \ast Co-lead author of research papers presented at the NeurIPS OT Workshop 2023, ICLR 2023, and ICML 2024.

• University of Delaware

2019 - 2021

Research Assistant

Newark, DE

- Led theoretical studies exploring the connections between entropic OT and measure concentration theory.
- Achievements:
 - * Lead author on papers published in ISIT 2019 and TIT 2021.
 - * Second author on papers published in ISIT 2020 and JMLR 2023.

Awards

• Travel grant of KIAS(Korea Institute For Advanced Study)	Seoul University, 2023
• Travel grant of Southeastern Analysis Meeting 39	Clemson University, 2023
• ECE Research Day 2021 poster sessions	University of Delaware, 2021
• GEMS project fund	University of Delaware, 2017

Teaching Experience

Visiting Instructor	Vanderbilt University	
• Foundations of Machine Learning (CS5262)	Fall 2023	
Teaching Assistant	University of Delaware	
• Advanced Machine Learning (ELEG 867, ELEG 602)	Spring 2019, Fall 2020	
• Convex Optimization (ELEG 667)	Fall 2019	
• Random Signals and Probability (ELEG 310)	Spring 2020, Spring 2021	
• Statistics (MATH 210)	Spring 2018, Fall 2018	
• Calculus and Analytic Geometry (MATH 241, MATH 221)	Fall 2016, Spring 2017	

Publications

Preprint

- Xinran Liu, **Yikun Bai**, Yuzhe Lu, Andrea Soltoggio, and Soheil Kolouri. Wasserstein task embedding for measuring task similarities. arXiv preprint arXiv:2208.11726, 2022
- Yikun Bai, Huy Tran, Steven B Damelin, and Soheil Kolouri. Partial transport for point-cloud registration. arXiv preprint arXiv:2309.15787, 2023
- Yikun Bai, Rocio Diaz Martin, Hengrong Du, Ashkan Shahbazi, and Soheil Kolouri. Efficient solvers for partial gromov-wasserstein. arXiv preprint arXiv:2402.03664, 2024

Conference

- Huy Tran*, Yikun Bai*, Abihith Kothapalli*, Ashkan Shahbazi, Xinran Liu, Rocio Diaz Martin, and Soheil Kolouri. Stereographic spherical sliced wasserstein distances. *International Conference on Machine Learning*, 2024
- Rocio P Diaz Martin*, Ivan Vladimir Medri*, Yikun Bai*, Xinran Liu, Kangbai Yan, Gustavo Rohde, and Soheil Kolouri. Lcot: Linear circular optimal transport. *International Conference on Learning Representations (ICLR)*, 2024
- Xinran Liu*, **Yikun Bai***, Zhanqi Zhu, Mathew Thorpe, and Soheil Kolouri. Ptlp: Partial transport lp distances. Optimal Transport and Machine Learning Workshop at Neural Information Processing Systems (NeurIPS), 2023
- Yikun Bai, Ivan Vladimir Medri, Rocio Diaz Martin, Rana Shahroz, and Soheil Kolouri. Linear optimal partial transport embedding. In *International Conference on Machine Learning*, pages 1492–1520. PMLR, 2023
- Yikun Bai*, Bernhard Schmitzer*, Mathew Thorpe, and Soheil Kolouri. Sliced optimal partial transport. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
- Daria Reshetova, Yikun Bai, Xiugang Wu, and Ayfer Özgür. Understanding entropic regularization in gans. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 825–830. IEEE, 2021
- Yikun Bai, Xiugang Wu, and Ayfer Özgür. Information constrained optimal transport: From talagrand, to marton, to cover. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2210–2215. IEEE, 2020

Journal

- Daria Reshetova, **Yikun Bai**, Xiugang Wu, and Ayfer Ozgur. Understanding entropic regularization in gans. In *Journal of Machine Learning Research*, 2023
- Yikun Bai, Xiugang Wu, and Ayfer Özgür. Information constrained optimal transport: From talagrand, to marton, to cover. *IEEE Transactions on Information Theory*, 69(4):2059–2073, 2023
- Scott A Sarra and Yikun Bai. A rational radial basis function method for accurately resolving discontinuities and steep gradients. Applied Numerical Mathematics, 130:131–142, 2018

^{*}These authors contributed equally to this work

Presentations

• SIAM Conference on Mathematics of Data Science (MDS24) (upcoming)	2024
• Conference on Computer Vision and Pattern Recognition	2023
• Southeastern Analysis Meeting 39	2023
• Korea Institute For Advanced Study (KIAS) AI seminar	2023
• International Conference on Machine Learning	2023
External Service	
Conference Reviewer	
• IEEE Information Theory Workshop	2024
• IEEE International Symposium on Information Theory	2024
• IEEE International Symposium on Information Theory	2023
• IEEE International Symposium on Information Theory	2022
Journal Reviewer	
• Sampling Theory, Signal Processing, and Data Analysis	2024
• Computer Vision and Image Understanding	2024
• IEEE Signal Processing Letters	2024
• IEEE Signal Processing Letters	2023
• IEEE Transactions on Circuits and Systems for Video Technology	2023
Membership	
CVF Sponsored Conferences	2023
• IEEE member	2022